Marco Caricato


Marco Caricato
  • Professor

Contact Info

Phone:
3189E GL (ISB)
Lawrence
1567 Irving Hill Rd
Lawrence, KS 66045

Education

M.S., Università di Pisa, 2003
Ph.D., Scuola Normale Superiore, 2006
Postdoctoral Fellow, Yale University,
2006-2010
Research Scientist, Gaussian, Inc.,
2010-2014

Specialization

  • Physical Chemistry
  • Electronic Structure Theory
  • Solvation Models
  • Electronic Excited States
  • Coupled Cluster Theory.

Research

Caricato Research Group Poster

Our research will focus on the theoretical simulation of the photochemistry of complex chromophores with applications in materials and environmental science. To this goal, we will develop 1) accurate electronic structure methods based primarily on coupled cluster theory, and 2) multiscale models that are able to combine multiple levels of theory (quantum and classical mechanics) to describe environmental effects.

1) Electronic structure methods for excited states.

Electronic excited states are still a challenge for computational chemistry: accurate wavefunction methods are too expensive for large molecules of interest in many practical applications, while efficient density functional methods still provide results that are too system dependent. Therefore, reliable theoretical predictions and interpretation of the photochemistry of large molecular compounds are difficult. Our group will investigate physically motivated approximations that can reduce the computational cost of wavefunction methods while preserving their accuracy, and will develop efficient computed code to perform practical calculations.

2) Multiscale models.

Interesting chemical processes often do not occur in a vacuum. The environment may exert a strong influence on these processes, and its effects should be included in theoretical simulations. Unfortunately, the amount of molecules involved in the environment is too large to be treated at a high level of theory (think, for instance, of a solvent). However, environmental effects can be treated as perturbations on the wavefunction of the main compounds. Hence, these effects can be introduced at lower, more manageable levels of theory. Multiscale models do just that: the entire system is divided in layers, each treated at a reasonable level of theory while appropriately introducing coupling terms between layers. Our group will develop multiscale methods that couple multiple quantum, classical, and continuum methods that will feel each other's influence self-consistently by means of electronic embedding potentials.

3) Simulation of molecular properties.

The methods developed in our group, as well as more standard computational tools, will be applied to the study of systems in materials, energy, and environmental science. Our aim is to provide interpretation to outstanding questions posed by experiments as well as provide predictions that may point towards new research directions.

Selected Publications

Caricato, M. A Perspective on the Simulation of Electronic Circular Dichroism and Circularly Polarized Luminescence Spectra in Chiral Solid Materials. J. Phys. Chem. A 2024, 128, 1197-1206. https://doi.org/10.1021/acs.jpca.3c08095

Parsons, T., Balduf, T., and Caricato, M. On the choice of coordinate origin in length gauge optical rotation calculations. Chirality. 2023; 35:708-717. https://doi.org/10.1002/chir.23575

Balduf, T., Blakemore, J.D., and Caricato, M. Computational Insights into the Influence of Ligands on Hydrogen Generation with [Cp*Rh] Hydrides. J. Phys. Chem. A 2023, 127, 6020-031. DOI: 10.1021/acs.jpca.3c02550

Zhang, K., and Caricato, M. Modeling Catalyzed Reactions on Metal-Doped Amorphous Silicates: The Case of Niobium-Catalyzed Ethylene Epoxidation. J. Phys. Chem. C 2023, 127, 4984-4997. DOI: 10.1021/acs.jpcc.3c00213

Balduf, T., and Caricato, M. Origin invariant molecular orbital decomposition of optical rotation. Theor Chem Acc 142, 11 (2023). https://doi.org/10.1007/s00214-022-02944-z

Balduf, T., and Caricato, M. Derivation and implementation of the optical rotation tensor for chiral crystals. J. Chem. Phys. 157, 214105 (2022). https://doi.org/10.1063/5.0130385

M. Caricato*, Cluster Model Simulations of Metal-Doped Amorphous Silicates for Heterogeneous Catalysis; J. Phys. Chem. C, (2021), 125, 27509. Feature ArticleFront Cover of JPCC

C. Vandervelden, A. M. Jystad, B. Peters*, M. Caricato*, Predicted Properties of Active Catalyst Sites on Amorphous Silica: Impact of Silica Preoptimization Protocol, Ind. Eng. Chem. Res., 60, (2021) 12834. I&EC Research’s 2021 Class of Influential Researchers Award.

M. Caricato*, T. Balduf, Origin Invariant Full Optical Rotation in the Length Dipole Gauge without London Atomic Orbitals; J. Chem. Phys., 155, (2021) 024118.

T. Balduf, M. Caricato*, Gauge Dependence of the S Molecular Orbital Space Decomposition of Optical Rotation; J. Phys. Chem. A, 125, (2021) 4976.

K. Zhang, T. Balduf, M. Caricato*, Full Optical Rotation Tensor at CCSD Level in the Modified Velocity Gauge; Chirality, 33, (2021) 303.

M. Caricato*, Origin Invariant Optical Rotation in the Length Dipole Gauge without London Atomic Orbitals; J. Chem. Phys., 153, (2020) 151101. Selected as Editor’s Pick.

A. M. Jystad, H. Leblanc, M. Caricato*, Surface Acidity Characterization of Metal-Doped Amorphous Silicates via Py-FTIR and 15N NMR Simulations; J. Phys. Chem. C, 124, (2020) 15231.

T. Aharon, M. Caricato*, Compact Basis Sets for Optical Rotation Calculations; J. Chem. Theory Comp., 16, (2020) 4408.

K. Zhang, S. Ren, M. Caricato*, Multi-state QM/QM Extrapolation of UV/Vis Absorption Spectra with Point Charge Embedding; J. Chem. Theory Comp., 16, (2020) 4361.

M. S. Barclay, C. G. Elles*, M. Caricato*, On the Discrepancy between Experimental and Calculated Raman Intensities for Conjugated Phenyl and Thiophene Derivatives; J. Phys. Chem. A, 124, (2020) 4678.