Safety in Chemistry at KU

Based on Materials Developed by:

Safety Committee for the Department of Chemistry and Gray-Little Hall (aka ISB)

August 8, 2025

Agenda

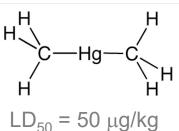
- Introduction
- Working Safely in ISB
 - Hazard Classes present in ISB
 - Safety Equipment in ISB
 - Personal Protective Equipment
 - Brief Review of Building Emergency Plan
 - Tornado Information
- Communicating about Safety
 - Who Can You Talk To?
 - Reporting Safety Concerns
- Handout
- Adjournment

Safety Committee Leadership

Prof. James Blakemore (Chemistry Department)

blakemore@ku.edu

Laurie White Facility/Building Manager Gray-Little Hall (ISB)

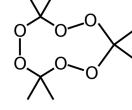

lauriewhite@ku.edu

Examples of Cases Where Things Went "Wrong"

Mercury Poisoning Kills Lab Chemist

Prof Karen Wetterhahn

Bristol University PhD student accidentally makes explosive chemical used in terror attacks



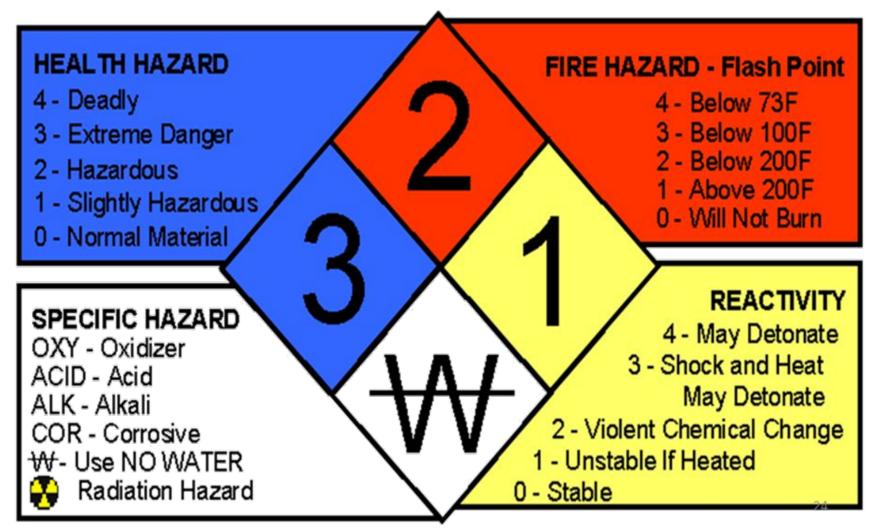
Learning From UCLA

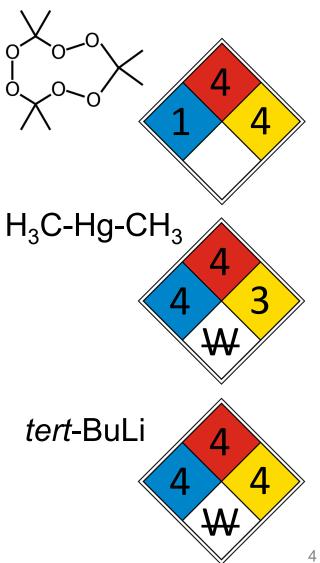
Details of the experiment that led to a researcher's death prompt evaluations of academic safety practices

By Jyllian N. Kemsley

Spark from pressure gauge caused University of Hawaii explosion, fire department says

Postdoc Thea Ekins-Coward, who lost an arm in the incident, was using a gauge not specified for work with flammable gases





In each instance, the chemicals involved behaved exactly as expected!

NFPA Fire Diamond

National Fire Protection Association

1. C (a) Na

(b) Ro

2. TYI

(a) Che

(b) Appl

Radioa

Isoto

Toxic

Biologically Active Agents

Example: Thallium hexafluorophosphate (TIPF₆)

Group: James Blakemore

Example: Lysyl oxidases

Group: Minae Mure

Inhalation Hazards

Example: Chemical powders (e.g., silica gel)

Poisonous/Compressed Gases

Example: Carbon Monoxide

Group: Misha Barybin

James Blakemore

Manar Shoshani

Group: Kristin Bowman-James

Mercury

Example: Na/Hg amalgam

Group: James Blakemore

Peroxides

Example: Hydrogen peroxide

Group: *Tim Jackson*

Corrosive strong acids/bases

Example: Piranha Acid

Group: Clean Room

Halogens & Other Oxidizers

Example: Bromine

Group: **Paul Hanson**

Water Reactive

Example: Sodium metal

Group: *Misha Barybin Manar Shoshani*

Pyrophorics

Example: *tert*-Butyllithium

Group: Jon Tunge

Cryogenics

Example: Liquid Nitrogen

Group: *Tim Jackson, NMR Laboratory*

Shock/Friction Sensitive

Example: Organic azides

Group: Paul Hanson

Lasers

Example: Invisible or Visible Light

Group: Chris Elles

Rebecca Whelan

Radiation

Example: X-ray radiation

Group: X-ray Lab, Scott Lovell

Example: Frayed electrical cords

Group: Ward Thompson, Brian Laird,
Marco Caricato, Building Offices

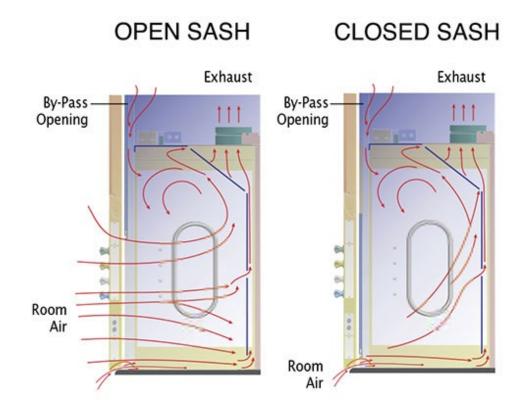
Open Flame

Example: Glassblowing

Group: Misha Barybin

Flammables

Example: Organic Solvents



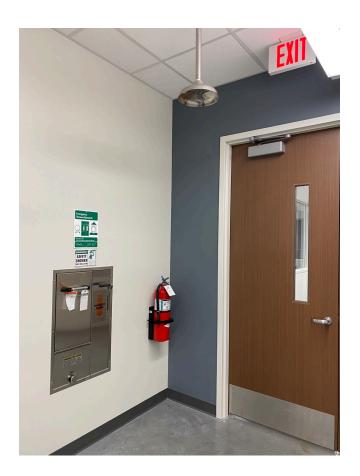
Group: all synthetic groups

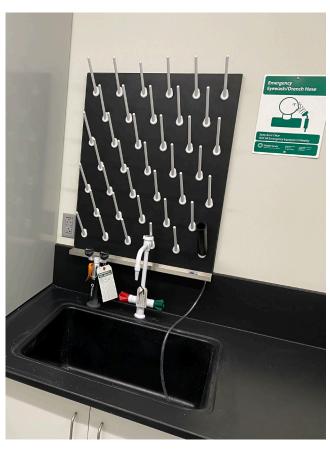
Fume Hoods

- Designed for trapping and venting of harmful chemical vapors
- Vapors transported through ducts and directed outside by blowers

When the machine is working...

When the machine doesn't work...


Fire in a Fume Hood with the Sash Down



Emergency Satety Equipment

- Safety showers and eyewash stations are located in all research and teaching labs
- At least 20 GPM flow rate for the safety showers (30 psi pressure)

Special Thanks:

Shrikant Londhe (Tunge Group)
Wade Henke (Blakemore Group)
Larry Cattoor and Sean Hadley (EHS)

Fill out Your Version of This Form Today!

KU Chemistry Laboratory Safety Emergency Contact Information

EMERGENCY? Any kind – Any time – DIAL 9-1-1

From a campus phone, this will connect you to KU Public Safety Dispatch.

From your mobile phone, this will connect you to Douglas County Dispatch or KU Dispatch; either dispatch will guide responders to your location.

Our Lab Location: Room	
Address:	
Our Lab Phone Number:	

Group Contacts with Phone Numbers

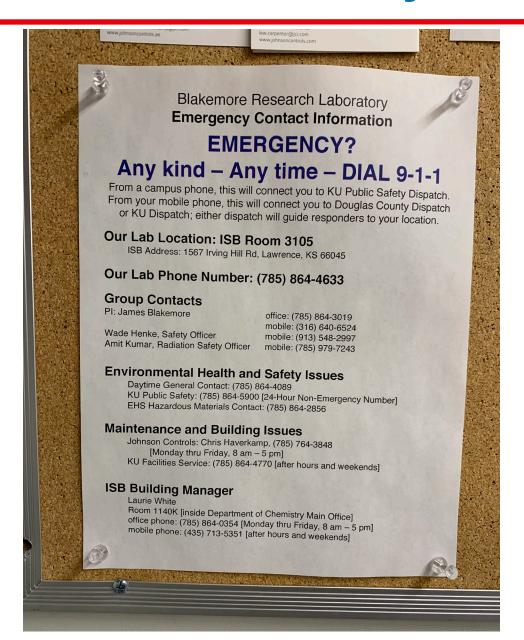
Principal Investigator: Safety Officer: REU In-Lab Co-Mentor:

Environmental Health and Safety Issues

Daytime General Contact: (785) 864-4089 KU Public Safety: (785) 864-5900 [24-Hour Non-Emergency Number] EHS Hazardous Materials Contact: (785) 864-2856

Maintenance and Building Issues

Johnson Controls: Chris Haverkamp, (785) 764-3848 [Monday thru Friday, 8 am – 5 pm] KU Facilities Service: (785) 864-4770 [after hours and weekends]


ISB Building Manager

Laurie White

Room 1140K [inside Department of Chemistry Main Office] office phone: (785) 864-0354 [Monday thru Friday, 8 am – 5 pm] mobile phone: (435) 713-5351 [after hours and weekends]

Department of Chemistry Safety

Prof. James Blakemore Room 3116 office phone: (785) 864-3019; e-mail: blakemore@ku.edu

Lab Phones

- All labs should be equipped with phones for use in emergencies
- Emergency Contact Information Sheet should be located nearby for use in emergency situations
- What happens if you dial 911 from a campus phone?
 - Refer to Emergency Contact Information Sheet
- Campus phones are Microsoft Teams phones

Concerned about your lab phone (or lack thereof)?
 Speak with Laurie White or James Blakemore

Fire Extinguishers and Fire Alarms

- Fire extinguishers can be found inside labs and at various locations in the building hallways
- Fire alarms are located next to all major exits and in some other locations

Fire Extinguisher Types

ABC Type

D Type

Student for comparison

Class D Fire Extinguisher

Composition: NaCl & sand (SiO₂)

- Very heavy (57 lbs)
- NaCl melts at the surface of burning metal (e. g., Na) to make a shell that prevents oxygen access to the metal surface

Fire Extinguisher Types

Fire class	Geometric symbol	Pictogram	Intended use	Mnemonic
Α	A		Ordinary solid combustibles	A for "Ash"
В	В		Flammable liquids and gases	B for "Barrel"
С			Energized electrical equipment	C for "Current"
D	D		Combustible metals	D for "Dynamite"
к		巡	Oils and fats	K for "Kitchen"

Examples

wood, fabric, paper, plastic, rubber

methane, propane, solvents, oils, alcohols

electrical appliances, computer equipment

solium, lithium, potassium, cesium, magnesium, titanium

cooking appliances, oils, Animal and vegetable fats

How to Use a Fire Extinguisher

P - PULL

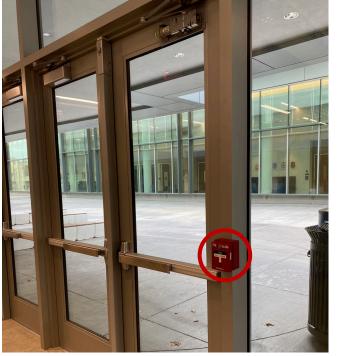
Hold the extinguisher upright and pull the pin to break the tamper seal

$\mathbf{A} - \mathsf{AIM}$

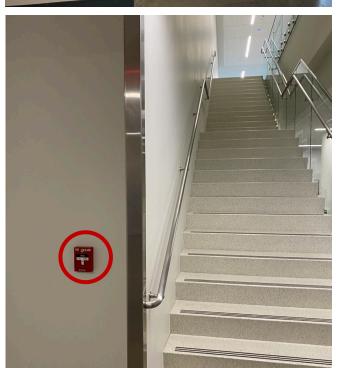
Point the nozzle or hose at the base of the fire

S – SQUEEZE

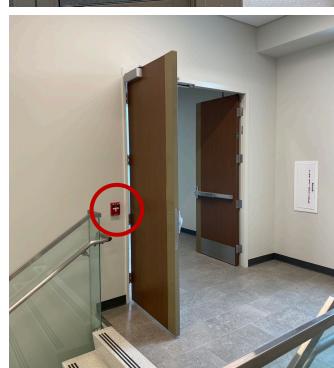
Squeeze the handle to release the extinguishing agent


S - SWEEP


Sweep the nozzle side to side at the base of the fire until it appears to be out

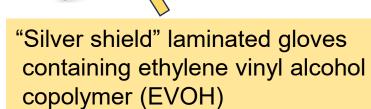


- Always keep a clear escape behind you
- If the fire cannot be controlled within seconds, evacuate immediately, pull a fire alarm, and call 911


Locations Fire Alarm

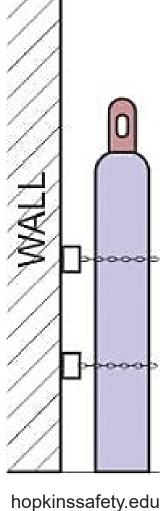
Automated External Defibrillator (AED)

- Device used to restore the heart rhythm in a cardiac arrest
- Located close to the dual elevators in the atrium on the 2nd floor
- American Red Cross classes for AED Certification (also First Aid and CPR training)
 - https://www.redcross.org/

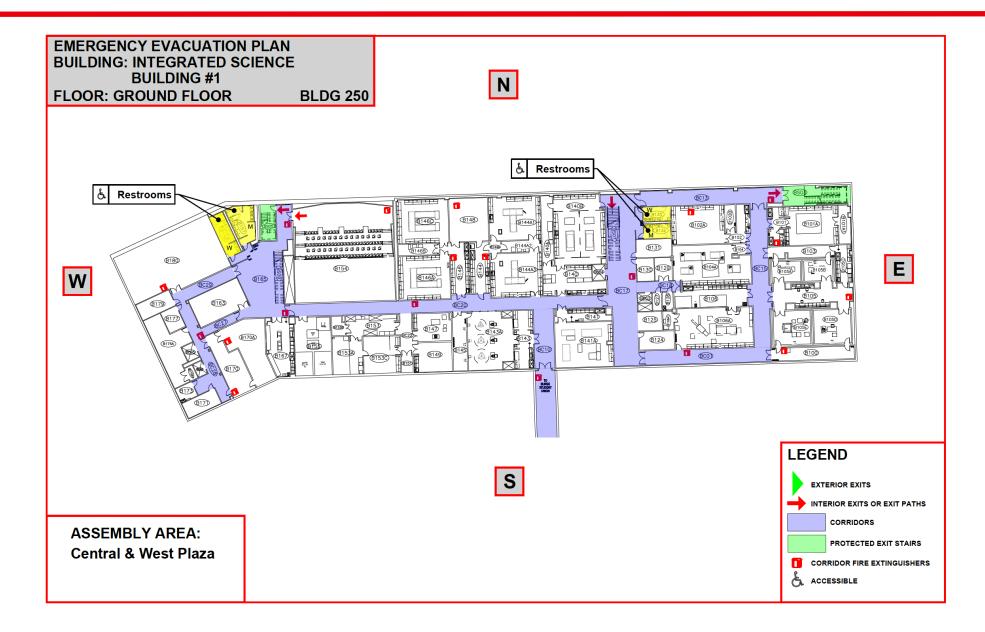

Personal Protective Equipment (PPE)

neoprene

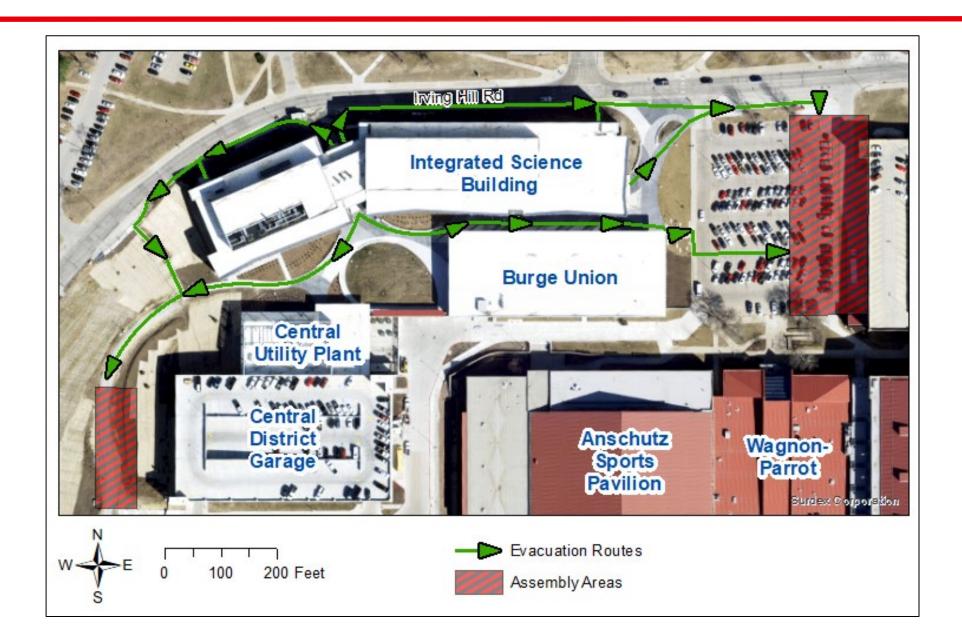
Personal Protective Equipment (PPE)



Gas Cylinders



- Never move a gas cylinder without its cap/bonnet firmly screwed on!
- If you see an unsecured tank without a cap, contact Laurie immediately!


Building Floor Maps

ISB Building Emergency Evacuation Plan (BEEP)

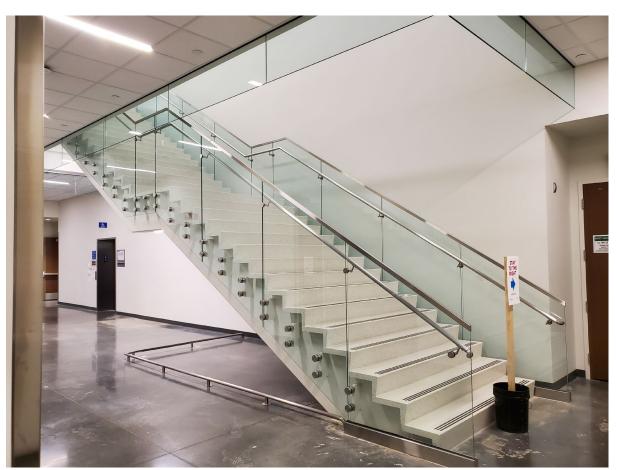
- A comprehensive document outlining guidelines for evacuations and emergencies
 - ☐ Fire/Smoke or Hazardous Material Release:
 - If the need for evacuation is discovered,
 - Pull fire alarm and exit the building
 - Call 911 and provide details
 - General procedure for evacuation
 - Shut down potentially hazardous operations or equipment
 - Evacuate following the route designated in the floor map
 - Account for your group members, report if anyone is missing
 - ☐ Medical Emergency:
 - Stay with the patient, call 911
 - Arrange for someone to meet with and direct first responders to the patient's location
 - Provide first aid ONLY if you are trained and sure about it

Evacuation Map

Tornado Facts

- Tornado winds can reach up to 300 mph
- Damage paths can be in excess of one mile wide and 50 miles long
- Funnel clouds usually last less than 10 minutes, but on rare occasions they can last for over an hour
- Tornados are most likely to occur between 3 pm and 9 pm, but can occur at any time

In Case of Tornado Warning, Take Refuge in Basement


If the Tornado Sirens go off...

- secure your experiments;
- go to the basement as quickly as possible;
- do not use the elevator;
- know your nearest exits before any weather occurs and plan your route.

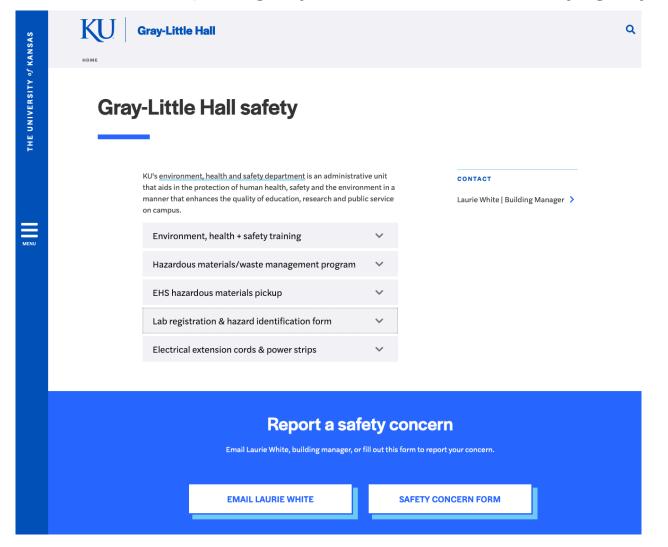
• The safest refuge location is through the solid double doors near the NMR Core Laboratory, in the tunnel hallway leading to the Chemistry Stockroom

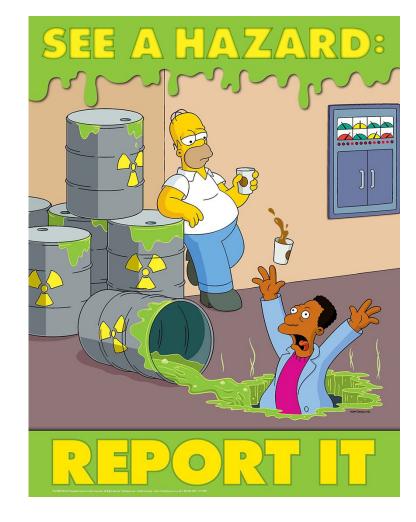
In Case of Tornado Warning, Take Refuge in Basement

Avoid Glass Stairs!

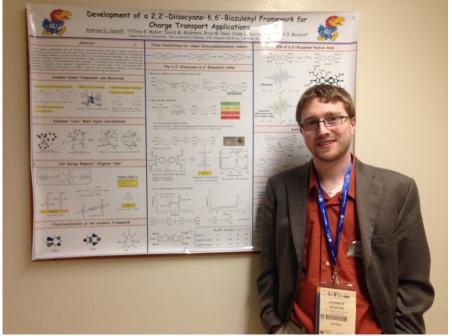
Reporting Safety Concerns

Four Options

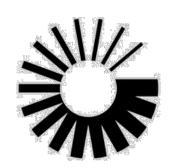

- 1. Safety Concerns Form

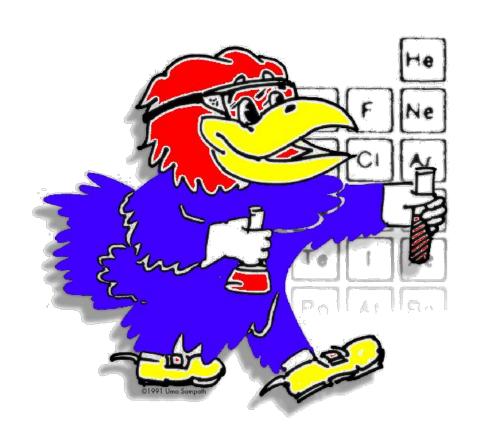

 Developed by the Chemistry Graduate Student Organization
- 2. Contact your supervisor (and/or in-lab co-mentor)
- 3. Contact Laurie White
- 4. Contact Prof. James Blakemore

 Chair of Chemistry Dept Safety Committee


Safety Concerns Form

Access at https://gray-little.ku.edu/safety-gray-little-hall




Principal Engineer at RTX

Rock Chalk!

