INSTRUCTOR: Prof. Paul R. Hanson; 4027 Malott.
Office Hours: MWF 11:00–Noon, and after weekly review sessions
COURSE EMAIL ACCOUNT: phanson@ku.edu
COURSE MATERIALS (See announcement on Blackboard for more information)

Required:
* WileyPLUS online instructional system. A WileyPLUS access code is included in the textbook packages sold through the bookstores.
* i>Clicker2 (see bottom of page 2 for registration information)

Optional, but highly recommended:
* Student Solutions Manual for the Klein textbook (hard copy or electronic version is included with the textbook packages sold through the KU Bookstore)
* Molecular models. Two different sets from HGS are available in the KU bookstore.

BLACKBOARD: http://courseware.ku.edu. The Blackboard site will contain all important class materials, and is also your point of access to WileyPLUS. All posted materials, including course syllabus, homework assignments, and Powerpoint slides used in lectures will be in PDF format that you can download and print. We will also use Blackboard to post announcements. If you have problems accessing the web site call the Blackboard help center at 864-0200. You must have a KU email address or register your email address with KU to utilize the web site and to receive email messages. If you need to register your email address or obtain a KU address for the first time, go to http://www.ku.edu/computing/services.

COURSE LEARNING OBJECTIVES: After completing CHEM 330, students will be able to:
- Derive structures of representative organic compounds on the basis of systematic names, and vice versa.
- Recognize the relationship between molecular structure and physical properties of organic compounds, including synthetic and biological polymers.
- Apply understanding of acid and base strength to predict the outcomes of proton transfer reactions in organic chemistry.
- Understand the sources and consequences of stereoisomerism and conformational changes in representative organic compounds.
- Predict products, mechanisms and relative rates of competing substitution and elimination reactions of alkyl halides and related compounds.
- Predict product(s) of organic reactions involving other common functional groups, including alkenes, alkynes, alcohols, epoxides, carbonyl compounds, and aromatic compounds.
- Apply Hückel’s rule to predict whether a cyclic conjugated compound is aromatic.
- Demonstrate an understanding of the stepwise mechanisms of reactions learned in the course.
- Propose reasonable laboratory syntheses of organic compounds, utilizing combinations of reactions learned in the course.

EXAM SCHEDULE:
Hour Exam 1 (100 points): Monday, February 13th. 5:50-7:50 PM (1003 Malott)
Hour Exam 1 (100 points): Monday, March 13th. 5:50-7:50 PM (1003 Malott)
Hour Exam 1 (100 points): Monday, April 17th. 5:50-7:50 PM (1003 Malott)
Final Exam (150 points): Tuesday, May 9th. 7:30–10:00 AM (1003 Malott)
HOUR EXAM GRADE REPLACEMENT POLICY: Your lowest hour exam score will be replaced by your percentage score on the final exam, unless that score is zero and resulted from an unacceptable absence, or unless all of your hour exam scores were higher than your percentage score on the final exam. Please do not use this policy as a rationale to forego preparing for one of the hour exams. Students, who do this, tend to struggle to get back on track because Organic Chemistry is a highly cumulative subject.

WileyPLUS REGISTRATION There is a link to WileyPLUS in the course Blackboard site. Once you have your access code, you can click on this link and you will be guided through the steps of setting up your account. If you are unable to purchase a code prior to the start of classes, you can use the WileyPLUS link noted above to set up a temporary account. This will give you two weeks of access, and will transition to a regular account once you have an access code.

COURSE GRADING: Points will be distributed as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Assignment</td>
<td>30</td>
</tr>
<tr>
<td>Weekly Open Quiz</td>
<td>30</td>
</tr>
<tr>
<td>Hour exams</td>
<td>300</td>
</tr>
<tr>
<td>Final exam</td>
<td>150</td>
</tr>
<tr>
<td>Total</td>
<td>510</td>
</tr>
</tbody>
</table>

FINAL LETTER GRADES: The following grading scale will be used, with rounding (i.e. A/A- cutoff will be 92.5%). A small curve may be applied at the end if the class average warrants.

- 93% – 100% = A
- 90% – 92% = A-
- 87% – 89% = B+
- 83% – 86% = B
- 80% – 82% = B-
- 77% – 79% = C+
- 73% – 76% = C
- 70% – 72% = C-
- 67% – 69% = D+
- 63% – 66% = D
- 60% – 62% = D-
- Below 60% = F

OrgPLUS SESSIONS (Optional): OrgPLUS Chemistry will be holding daily M–F discussion/review sessions throughout the semester. The PLUS schedule will be posted within daily lecture notes, and can also be accessed at http://www2.ku.edu/~plus/organicchemistry.shtml

Weekly Review Sessions (Optional): TBA

EXAM REVIEW SESSIONS: In addition to weekly review sessions, an additional optional review/discussion session (instructor led) will be held during the days leading up to exam week.

PROBLEM SOLVING: The better your problem solving skills, the better you will do in the course. As you study the text, work the relevant in-chapter problems to be sure you understand the material, and then work as many additional problems as you can. A list of recommended end-of-chapter problems from each chapter in the textbook will be posted to Blackboard. I will also post a set of analogous electronic problems for each chapter via WileyPLUS. You may also wish to take advantage of Orion, adaptive learning software integrated with the Klein e-text that is available through WileyPLUS. Please refer to the last page of the syllabus for additional study tips.

DISABILITY ACCOMMODATIONS: The Academic Achievement & Access Center (AAAC) coordinates accommodations and services for all KU students who are eligible. If you have a disability for which you wish to request accommodations and have not contacted the AAAC, please do so as soon as possible. Their office is located in 22 Strong Hall; their phone number is 785-864-4064 (V/TTY). Information about their services can be found at http://disability.ku.edu. Please also contact me privately in regard to your needs in this course.
HOW TO STUDY ORGANIC CHEMISTRY: Success in organic chemistry requires mastering a substantial body of factual information and the use of this information in the solution of problems. **You should plan a minimum of three hours of study and problem solving outside of class for every hour of lecture.** To study productively, you should carefully read the assignments, marking key items to be learned on each page. Pay particular attention to the “Essential Problem Solving Skills” listed at the end of each chapter. As you study the text and your lecture notes, train your hand to draw the structures of molecules and write equations and mechanisms. Build models of various structures and learn to translate these three dimensional structures onto paper. Get a large quantity of scratch paper and write, write, write and solve problems!

Work as many problems as possible, in writing and in full detail. There is no other way to acquire the skills you will need to succeed in organic chemistry. Organic chemistry is a cumulative subject and the material you learn in the first week of the course will still be used at the end of the second semester of organic chemistry. Even though the assigned problems are not graded, it is extremely important that you work them. If you struggle with a problem that you can't solve immediately, don't give up and look up the answer. Review related material in your lecture notes and in the text. If you still can't solve the problem set it aside and try it again later. In this way you will gradually learn the important material without trying to memorize it.

You will also learn a way of thinking, of looking for patterns and similarities between seemingly unrelated ideas and facts. If you must look up the answer to a problem, be sure that you understand how to solve that type of problem. Organic chemistry requires a lot of hard work and consistent effort and studying. Don't try to memorize the text and cram before exams. If you do, you are courting disaster! An understanding of reactions is essential and although facts must be learned, they will quickly overwhelm you unless you understand the general principles and see the relationships among the facts.

1. **Come to class every day, take careful notes, and read and rewrite the notes within 24 hours.** Your notes are an important resource for study. Numerous studies have shown that lecture material loses its value if it is not reviewed shortly after class.
2. **Keep up.** Organic chemistry is cumulative. This seems obvious, but failing to do so is the major reason for not doing well in the course.
3. **Study actively.** Write, write, write! Form a study group and explain concepts with each other. Work out strategies for solving various types of problems. Writing mechanisms is crucial to success in organic chemistry.
4. **Saturday Discussions (instructor led) and OrgPLUS discussion sections are additional options for help in this class.**
5. **Work as many problems as possible.** This is the only way to learn organic chemistry.
6. **Keep a calendar.** Know when exams are and plan your time so that you are not trying to learn material the night before the exam.
7. **Be well rested before an exam.** Because of the cumulative nature of organic chemistry it is not possible to "pull an all-nighter" and do well on exams.

COMMERCIAL NOTE-TAKING: Pursuant to the University of Kansas’ [Policy on Commercial Note-Taking Ventures](http://www2.ku.edu/~unigov/usrr.html#art2sect6), commercial note taking is not permitted in Organic Chemistry (CHEM 385). Please note: note-taking provided by a student volunteer for a student with a disability, as a reasonable accommodation under the ADA, is not the same as commercial note-taking and is not covered under this policy.

ACADEMIC MISCONDUCT: Cheating, or the appearance thereof, including giving or receiving help on an exam, looking at another student’s paper while taking an exam, falsifying exam papers, using unauthorized materials, notes, crib sheets, or the equivalent, will not be tolerated and will be dealt with in accordance with University regulations (see http://www2.ku.edu/~unigov/usrr.html#art2sect6). The Chemistry Department reserves the right to make and keep copies of individual examination papers.